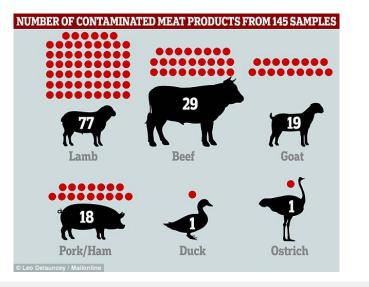


Application of Next Generation Sequencing (NGS) in Food Authenticity


XING Ranran Ph.D./Assistant Professor Chinese Academy of Inspection and Quarantine (CAIQ)

🛧 November 6, 2019 🔸

UK Food Standards Agency Says 1/5 of Meat It Tested Contained Mystery DNA

• One in five of 665 tested samples "were partly or wholly made up of unspecified meat."

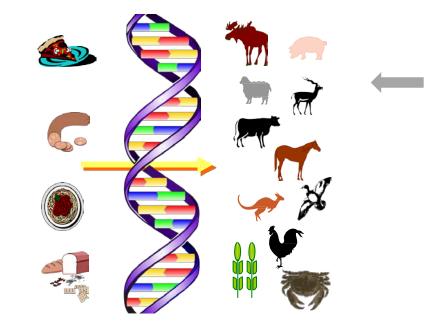
https://www.bbc.co.uk/news/uk-45371852

Food Chemistry 309 (2020) 125653

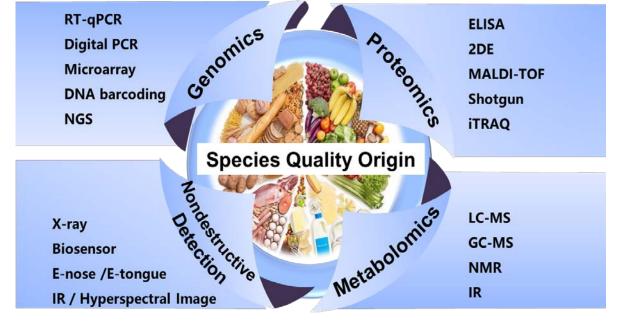
Analytical Methods

ĒŎ

DNA barcoding and mini-barcoding in authenticating processed animalderived food: A case study involving the Chinese market


Ran-Ran Xing^a, Ran-Ran Hu^{a,b}, Jian-Xun Han^{a,c}, Ting-Ting Deng^{a,b}, Ying Chen^{a,*}

^a Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
^b College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
^c College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China


• Approximately 23% of selected commercial samples were determined to be mislabeled.

Xing, Ran-Ran, et al. Food Chemistry (2019): 125653.

• DNA techniques are now routinely and officially used for species identification in food products.

Advanced methods used to test for authenticity

Current Issues

• The vast majority of existing DNA typing methods are targeted methods that can only detect either one or a small number of ingredients at a time.

- For example: To detect a claimed "100% beef" product
- Traditional DNA testing with PCR technique :
 - Check the presence or not of some selected specific target(s) Test (PCR) of a beef product: presence of Beef «Positive » result
 - presence of Horse :
 - presence of Pork :
 - duck ? chicken ? dog ?

EÖ

We won't know until we check for them.

 $\sqrt{}$

X

X

« Negative » result

« Negative » result

Why NGS ?

Next Generation Sequencing (NGS)

EÖ

- Allows simultaneous detection of multi-species
- Untargeted screening approach

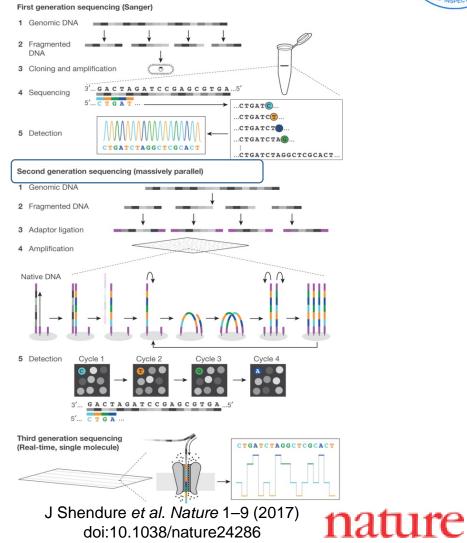
Can identify all animal species contained in the beef product.

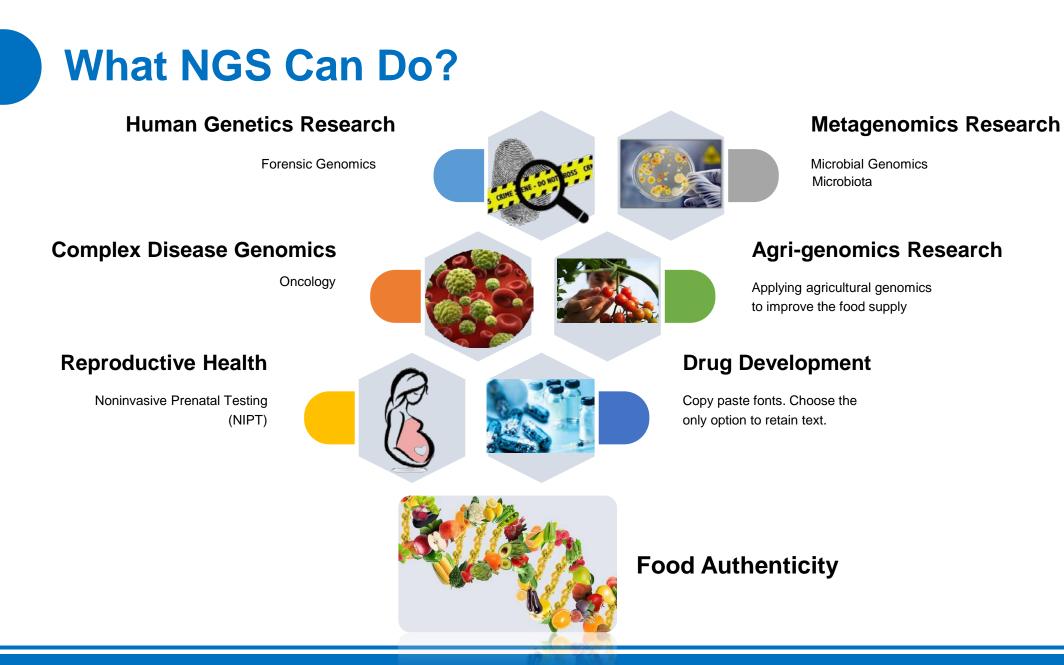
What is Next Generation Sequencing?

- •1st Generation = Sanger Sequencing
 - -~ 1000 bps Golden standard
 - -Low throughput
 - -High sequencing quality

•2nd Generation = Next Generation Sequencing

- -~ 600 bps
- -High throughput
- -High sequencing quality

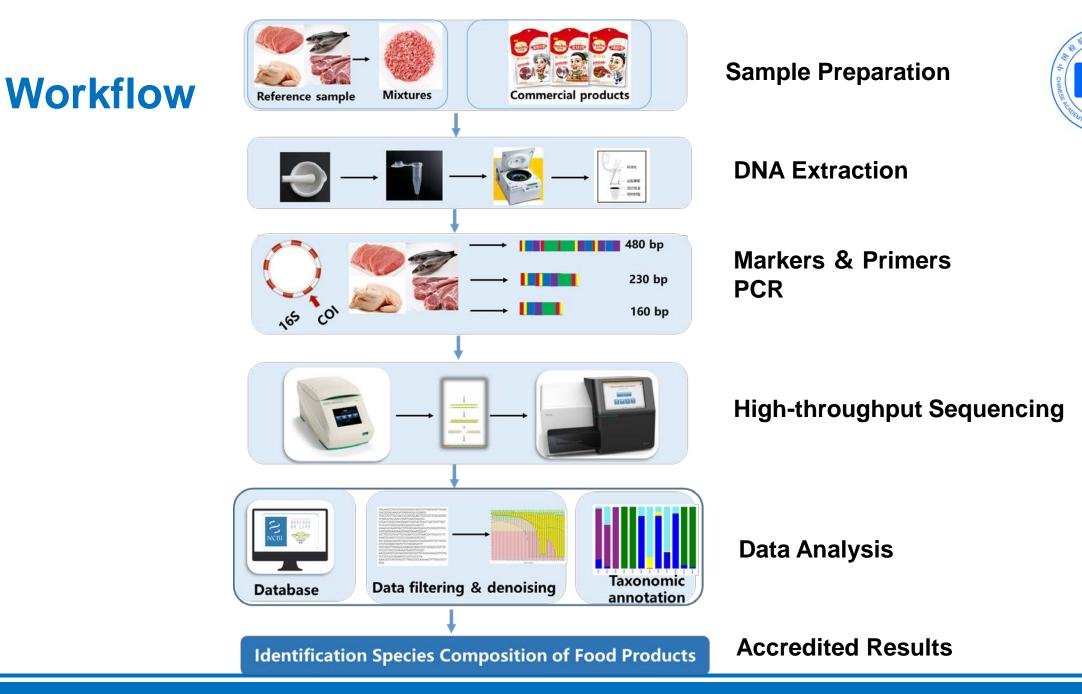

•3rd Generation = Single Molecule Sequencing


- -~ 10K 1 M bps
- –Medium throughput
- -Acceptable sequencing quality

NGS also known as

High throughput sequencing

Ultra-deep sequencing



Animal Species Identification in Food Products

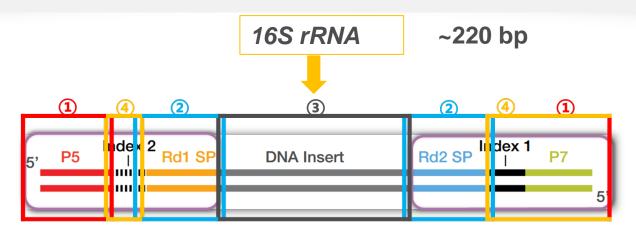
Sample Preparation

Artificially mixed meat species

No.	Raw Material	Species components in prepared mixture	
S1-1	meat	50% pig + 50% chicken	1 -
S1-2	meat	50% pig + 50% chicken	
S2-1	meat	90% pig +10% chicken	Assess the quantitative ability
S2-2	meat	90% pig +10% chicken	ןר
S3-1	DNA	90% pig DNA +10% chicken DNA	Effect of DNA extraction
S3-2	DNA	90% pig DNA +10% chicken DNA	1-

Artificially mixed meat and fish species

No.	Raw Material	Species components in prepared mixture	
H1	meat	20% duck+20% salmon+59% Atlantic salmon+1% chicken	Sensitivity
H2	meat	20% duck+20% salmon+50% Atlantic salmon+10% chicken	
НЗ	meat	20% duck+20% salmon+30% Atlantic salmon+30% chicken	Accuracy
H4	meat	20% duck+20% salmon+ 0 Atlantic salmon +60% chicken	
H5	meat	12.5% duck+12.5% salmon+12.5% Atlantic salmon +12.5% chicken+12.5% rainbow trout+12.5% pig+12.5% pink salmon+12.5% tilapia	Throughput


Library Construction

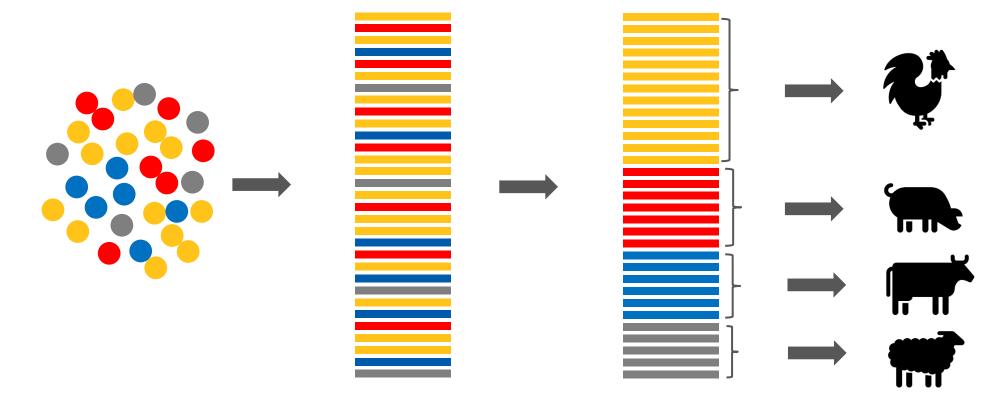
PCR amplification of a marker gene

Marker choice :

- Variable region for classification
- DNA from processed food samples can be degraded, mini-barcodes (100–300 bp) may be more suitable.
- The read length of the second generation sequencing is much shorter (100–600 bp).

A DNA library is a population of DNA fragments ready for sequencing.

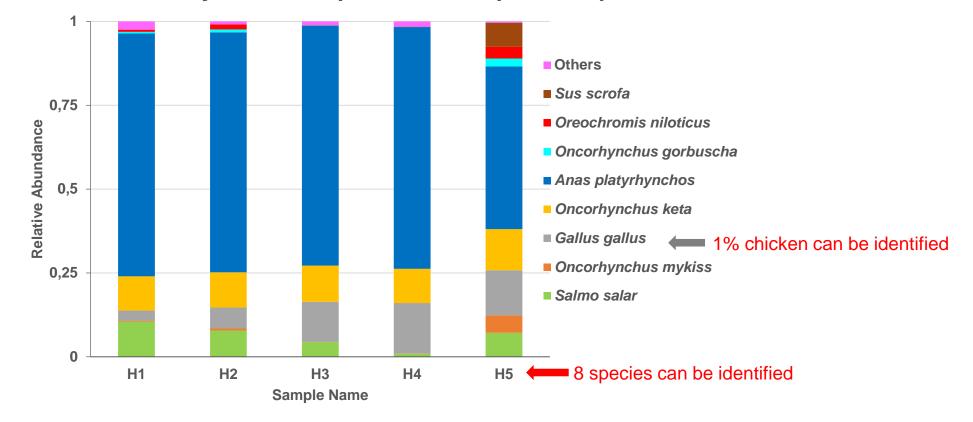
LIBRARY CONSTRUCTION


Cluster Generation

PCR-amplified gene fragments

Operational Taxonomic Units (OUT clusters)

Species



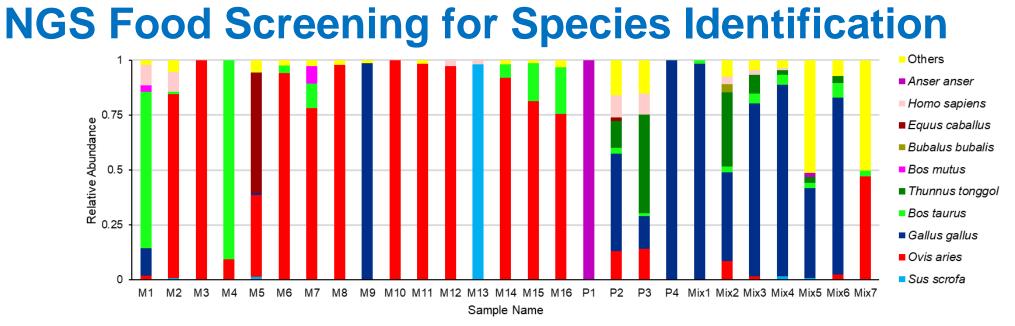
Species Identification

The method can identify different species in complex sample

Relative abundance of the animal species in the artificially mixed samples

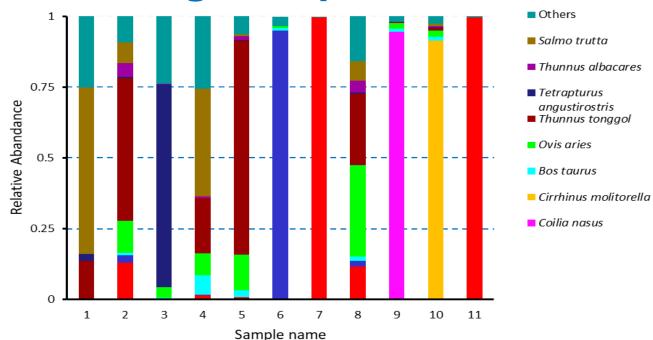
NGS Food Screening for Species Identification

Different commercial animal-derived food representing a variety of product types and species were obtained from supermarket, local market, restaurants and three online retail sources in China.


Listed one or several animal species on the label.

Twenty-seven commercial meat and poultry products, 11 fish products were analyzed.

Commercial Food Products



Relative species composition in meat samples based on sequence read counts

Classification	Example	Product	Species listed	Species identification	Yes/No?
Nine samples sequenced were consisted with the label	M3	Mutton	Sheep	Sheep	\checkmark
Ten samples listed a single animal species were detected to contain a mixture of two or more species	M1	Beef Stuffing	Cattle	Cattle, Chicken	×
Six samples listed more than one animal species were detected not consisted with the label	Mix1		Duck, Chicken, Cattle, Sheep, Deer	Chicken, Cattle	×
Two samples were entirety mislabeled that contained completely different animal species with the label	M4	Roasted Camel Meat	Camel	Cattle, Chicken	×
			Xin	g, Ran-Ran, et al. I	ood Contro

NGS Food Screening for Species Identification

Relative species composition in fish products based on sequence read counts

Sample Name	Product	Species listed	Species identification	Yes/No?
1	Fried Salmon Floss	Salmon	Salmo trutta, Thunnus albacares	×
2	Tuna Floss	Tuna	Tuna, Chicken, Sheep	×
11	11 Fish balls No label		Chicken	×

Strengths and Limitations of NGS

KEY ADVANTAGES OF NGS

- High throughput with sample multiplexing
- High sensitivity to detect low-frequency variants
- Universal database , database continuously growing

ĒQ

• High specificity

SIGNIFICANT CHALLENGES

₩C

• NGS infrastructures must consist of

appropriate expertise

- Quantification is hard for NGS in food authenticity testing
- For food samples, the price is relatively

high

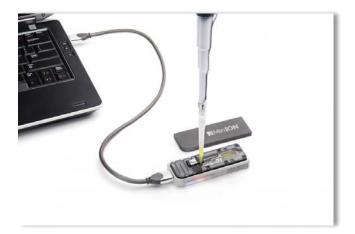
The Future of NGS in Food Authenticity

The cost of NGS platforms are decreasing

The first human genome project took 20 years, and cost \$3 billion.

Sequencing 18,000 human genomes in a single year, at the cost of < \$1000 per genome.

The Future of NGS in Food Authenticity


The development of NGS

2nd Generation High throughput

3rd Generation Long read-length Single molecule, PCR-free

NANOPORE MinION Portable, Real-time

Thanks for your attention

- Ranran Xing Ph.D.
- Chinese Academy of Inspection and Quarantine, CAIQ
- Mobile: +86-15600647809
- E-mail : xingranrancaiq@163.com